Parallel Implementation of Riccati Recursion for Solving Linear-Quadratic Control Problems

نویسندگان

  • Gianluca Frison
  • John Bagterp Jørgensen
چکیده

In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is usually the main computational effort. In this paper an alternative version of the Riccati recursion solver for LQ control problems is presented. The performance of both the classical and the alternative version is analyzed from a theoretical as well as a numerical point of view, and the alternative version is found to be approximately 50% faster than the classical one, for systems with many states. A number of parallel implementations of the alternative version has been proposed and tested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Methods for Large Scale Moving Horizon Estimation and Control

Abstract: Both the linear moving horizon estimator and controller may be solved by solving a linear quadratic optimal control problem. A primal active set, a dual active set, and an interior point algorithm for solution of the linear quadratic optimal control problem are presented. The major computational effort in all these algorithms reduces to solution of certain unconstrained linear quadrat...

متن کامل

About One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions

In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...

متن کامل

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

Solving Sparse Differential Riccati Equations on Hybrid CPU-GPU Platforms

The numerical treatment of the linear-quadratic optimal control problem requires the solution of Riccati equations. In particular, the differential Riccati equations (DRE) is a key operation for the computation of the optimal control in the finite-time horizon case. In this work, we focus on large-scale problems governed by partial differential equations (PDEs) where, in order to apply a feedba...

متن کامل

A Multi - Level Technique for the Approximate Solution of Operator Lyapunov andAlgebraic Riccati

We consider multi-grid, or more appropriately, multi-level techniques for the numerical solution of operator Lyapunov and algebraic Riccati equations. The Riccati equation, which is quadratic, plays an essential role in the solution of linear-quadratic optimal control problems. The linear Lyapunov equation is important in the stability theory for linear systems and its solution is the primary s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013